
Investigation of continuous-time quantum walk via modules of Bose–Mesner and Terwilliger

algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 13295

(http://iopscience.iop.org/0305-4470/39/42/007)

Download details:

IP Address: 171.66.16.106

The article was downloaded on 03/06/2010 at 04:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/42
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 13295–13323 doi:10.1088/0305-4470/39/42/007

Investigation of continuous-time quantum walk via
modules of Bose–Mesner and Terwilliger algebras

M A Jafarizadeh1,2,3 and S Salimi1,3

1 Department of Theoretical Physics and Astrophysics, Tabriz University, Tabriz 51664, Iran
2 Institute for Studies in Theoretical Physics and Mathematics, Tehran 19395-1795, Iran
3 Research Institute for Fundamental Sciences, Tabriz 51664, Iran

E-mail: jafarizadeh@tabrizu.ac.ir and shsalimi@tabrizu.ac.ir

Received 23 March 2006, in final form 1 August 2006
Published 4 October 2006
Online at stacks.iop.org/JPhysA/39/13295

Abstract
The continuous-time quantum walk on the underlying graphs of association
schemes has been studied, via the algebraic combinatorics structures of
association schemes, namely semi-simple modules of their Bose–Mesner and
Terwilliger algebras. It is shown that the Terwilliger algebra stratifies the graph
into a (d + 1) disjoint union of strata which is different from the stratification
based on distance, except for distance regular graphs. In underlying graphs
of association schemes, the probability amplitudes and average probabilities
are given in terms of dual eigenvalues of association schemes, such that
the amplitudes of observing the continuous-time quantum walk on all sites
belonging to a given stratum are the same, therefore there are at most (d + 1)

different observing probabilities. The importance of association scheme
in continuous-time quantum walk is shown by some worked out examples
such as arbitrary finite group association schemes followed by symmetric Sn,
Dihedral D2m and cyclic groups. At the end it is shown that the highest
irreducible representations of Terwilliger algebras pave the way to use the
spectral distributions method of Jafarizadeh and Salimi (2005 Preprint quant-
ph/0510174) in studying quantum walk on some rather important graphs called
distance regular graphs.

PACS number: 03.65.Ud

1. Introduction

Random walks on graphs are the bases of a number of classical algorithms. Examples include
2-SAT (satisfiability for certain types of Boolean formulae), graph connectivity and finding
satisfying assignments for Boolean formulae. It is this success of random walks that motivated
the study of their quantum analogues in order to explore whether they might extend the set
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of quantum algorithms. This has led to a number of studies. Quantum walks on the line
were examined by Nayak and Vishwanath [2] and on the cycle by Aharonov et al [3]. The
latter have also considered a number of properties of quantum walks on general graphs [1].
Two distinct types of quantum walks have been identified: for the continuous-time quantum
walk (CTQW) a time-independent Hamiltonian governs a continuous evolution of a single
particle in a Hilbert space spanned by the vertices of a graph [1, 3–5], while the discrete-time
quantum walk requires a quantum coin as an additional degree of freedom in order to allow for
a discrete-time unitary evolution in the space of the nodes of a graph. The connection between
both types of quantum walks is not clear up to now, but in both cases different topologies of
the underlying graph have been studied (see, for example, [2, 6–10]).

Different behaviour of the quantum walk as compared to the classical random walk
have been reported under various circumstances. For instance, a very promising feature of
a quantum walk on a hypercube, namely an exponentially faster hitting time as compared to
a classical random walk, has been presently found (numerically) by Yamasaki et al [11] and
(analytically) by Kempe [12]. Indeed, first quantum algorithms based on quantum walks which
offer an (exponential) speedup over their optimal classical counterpart have been reported in
[13, 14].

On the other hand, the theory of association schemes has its origin in the design of
statistical experiments. The motivation came from the investigation of special kinds of
partitions of the Cartesian square of a set for the construction of partially balanced block
designs. In this context association schemes were introduced by Bose and Nair. Although
the concept of an association scheme was introduced by Bose and Nair, the term itself was
first coined by Bose and Shimamoto in [15]. In 1973, through the work of Delsarte [16]
certain association schemes were shown to play a central role in the study of error correcting
codes. This connection of association schemes to algebraic codes, strongly regular graphs,
distance regular graphs, design theory etc, further intensified their study. Association schemes
have since then become the fundamental, perhaps the most important objects in algebraic
combinatorics. To this regard association schemes have for some time been studied by various
people under such names as centralizer algebras, coherent configurations, Schur rings, etc.
Correspondingly, there are many different approaches to the study of association schemes.

A further step in the study of association schemes was their algebraization. This
formulation was done by Bose and Mesner who introduced to each association scheme a
matrix algebra generated by the adjacency matrices of the association scheme. This matrix
algebra came to be known as the adjacency algebra of the association scheme or the Bose–
Mesner algebra, after the names of the people who introduced them. The other formulation
was done by Terwilliger, known as the Terwilliger algebra. This algebra is a finite dimensional,
semi-simple and is non-commutative in general. The Terwilliger algebra has been used to
study P- and Q-polynomial schemes [17], group schemes [18, 19] and Doob schemes [20].

In this paper, we study CTQW on the underlying graphs of association schemes, by using
their algebraic combinatorics structures, namely semi-simple modules of their Bose–Mesner
and (reference state dependent) Terwilliger algebras. By choosing the (walk) starting site as
a reference state, the Terwilliger algebra connected with this choice stratifies the graph into
a (d + 1) disjoint union of strata (associate classes), where the amplitudes of observing the
CTQW on all sites belonging to a given stratum are the same. In general, this stratification is
different from the one based on distance except for distance regular graphs. Since all vertices
of underlying graph of an association scheme are similar or they have a constant measure of
similarity, therefore the observing probabilities can be determined by the relations or associate
classes. Hence for a CTQW over a graph associated with a given scheme with diameter d, we
have at most (d + 1) (the number of strata) different observing probabilities.
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In underlying graphs of association schemes, the probability amplitudes and average
probabilities are given in terms of dual eigenvalues of association schemes. As most of
association schemes arise from finite groups, hence we have studied in great details CTQW
on generic group association schemes with real and complex representations, where the
probability amplitudes are given in terms of characters of groups. Furthermore, as examples,
we have investigated walk on graphs of association schemes of symmetric Sn, Dihedral D2m

and cyclic groups.
Also using the algebraic combinatorics structures of some rather important graphs called

distance regular graphs (where the Hilbert space of walk consists of irreducible module of
Terwilliger algebra with maximal dimension), we have established the required conditions to
apply the spectral distributions method of [1], for studying CTQW on them. Actually, it is
shown that these conditions are inherent in distance regular graphs, due to the existence of
the scheme structure (stratification) based on distance. Then using the spectral distribution,
we have evaluated the amplitudes of CTQW on distance regular graphs such as Johnson and
strongly regular graphs such as Petersen graphs and normal subgroup graphs. Likewise, using
the method of spectral distribution, we have evaluated the probability amplitudes of CTQW
on symmetric product of trivial association schemes such as Hamming graphs, where their
amplitudes are proportional to the product of amplitudes of constituent sub-graphs, and walk
does not generate any entanglement between constituent sub-graphs.

The organization of this paper is as follows. In section 2, we give a brief outline of
association schemes, Bose–Mesner and Terwilliger algebras and stratification. Section 3 is
devoted to studying CTQW on underlying graphs of association schemes. In section 4, we
work out CTQW on group association schemes. Section 5 is devoted to distance regular graphs
and the required conditions (stemming from their scheme structure) to reveal their QD nature
introduced in [1, 21]. In section 6, we explain how we can associate the spectral distribution
µ, introduced in [1, 21], to adjacency matrix A of distance regular graphs to study CTQW,
by using their algebraic combinatorics structures. In section 7, we calculate the amplitudes
for CTQW on some graphs by using the prescriptions of sections 3, 4, 6. The paper is ended
with a brief conclusion and three appendices, where the first appendix consists of studying the
method of symmetrization of non-symmetric group schemes, the second appendix contains
determination of spectral distribution by continued fractions method and the third appendix
contains the list of some of the finite distance regular graphs with their corresponding spectral
distributions, respectively.

2. Association scheme, Bose–Mesner algebra, Terwilliger algebra and its modules

In this section, we give a brief outline of some of the main features of association scheme, such
as adjacency matrices, Bose–Mesner algebra and Terwilliger algebra. At the end by choosing
the (walk) starting site as a reference state we stratify the underlying graphs of association
schemes via the relevant Terwilliger algebra connected with this choice.

2.1. Association schemes

First we recall the definition of association schemes. The reader is referred to [22] for further
information on association schemes.

Definition 2.1 (association schemes). Let V be a set of vertices and let Ri (i = 0, 1, . . . , d)

be non-empty relations on V (i.e., subset of V × V ). Let the following conditions (1)–(4)
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Figure 1. Hamming scheme for n = 2 and d = 2 which consist of vertices {1, 2, 3, 4} and relations
R0 = {(i, i) : i = 1, 2, 3, 4}, R1 = {(i, i + 1(mod 4)) : i = 1, 2, 3, 4} ∪ {(i + 1(mod 4), i) : i =
1, 2, 3, 4} set of solid line and R2 = {(i, i + 2(mod 4)) : i = 1, 2, 3, 4} ∪ {(i + 2(mod 4), i) :
i = 1, 2, 3, 4} set of dashed line, respectively. Its non-vanishing intersection numbers are
p0

11 = 2, p0
22 = 1, p1

01 = p1
10 = 1, p2

11 = 2, p1
21 = p1

12 = 1.

be satisfied. Then the pair Y = (V , {Ri}0�i�d) consisting of a set V and a set of relations
{Ri}0�i�d is called an association scheme:

(1) {Ri}0�i�d is a partition of V × V ,
(2) R0 = {(α, α) : α ∈ V },
(3) Ri = Rt

i for 0 � i � d, where Rt
i = {(β, α) : (α, β) ∈ Ri},

(4) Given (α, β) ∈ Rk, p
k
ij = |{γ ∈ V : (α, γ ) ∈ Ri and (γ, β) ∈ Rj }|, where the constants

pk
ij are called the intersection numbers, depend only on i, j and k and not on the choice

of (α, β) ∈ Rk . Also condition (3) implies that pk
ij = pk

ji for all i, j, k ∈ {0, 1, . . . , d}.
Then the number n of the vertices V is called the order of the association scheme and

Ri is called a relation (colour) or associate class. Therefore, intersection number pk
ij can

be interpreted as the number of vertices which have relation i and j with vertices α and β,
respectively, provided that (α, β) ∈ Rk , and it is the same for all element of relation Rk (see
figure 1). For all integers i (0 � i � d), set ki = p0

ii and note that ki �= 0, since Ri is
non-empty. We refer to ki as the ith valency of Y. Observe that p0

ij = δij ki (0 � i, j � d).
Also for a given vertex α, we denote Ri(α) = {β ∈ V : (α, β) ∈ Ri} as the set of vertices

having relation Ri with it. Therefore, the set V can be written as disjoint union of Ri(α) for
i = 0, 1, 2, . . . , d, i.e.,

V =
d⋃

i=0

Ri(α). (2.1)

Finally, the underlying graph of an association scheme � = (V ,R1) is an undirected connected
graph, where the sets V and R1 consist of its vertices and edges, respectively. Obviously,
replacing R1 with one of other relation such as Ri , for i �= 0, 1, will also give us an underlying
graph � = (V ,Ri) (not necessarily a connected graph) with the same set of vertices but a new
set of edges Ri .

2.2. The Bose–Mesner algebra

Let C denote the field of complex numbers. By MatV (C) we mean the C-algebra consisting
of all matrices whose entries are in C and whose rows and columns are indexed by V . For
each integer i (0 � i � d), let Ai denote the matrix in MatV (C) with (α, β)-entry

(Ai)α,β =
{

1 if (α, β) ∈ Ri,

0 otherwise,
(α, β ∈ V ). (2.2)
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The matrices Ai are called the adjacency matrices of the association scheme. We then have
A0 = I (by (2)) and

AiAj =
d∑

k=0

pk
ijAk (2.3)

(by (4)), so A0, A1, . . . , Ad form a basis for a commutative algebra A of MatV (C), where A is
known as the Bose–Mesner algebra of Y = (V , {Ri}0�i�d).

Since the matrices Ai commute, they can be diagonalized simultaneously (see [23]), that
is, there exists a matrix S such that for each A ∈ A, S−1AS is a diagonal matrix. Therefore, A
is semi-simple and has a second basis E0, . . . , Ed (see [22]). These are matrices satisfying

E0 = 1

n
J, EiEj = δijEi,

d∑
i=0

Ei = I. (2.4)

The matrix 1
n
J (where J is the all-one matrix in A) is a minimal idempotent (idempotent is

clear, and minimal follows from the rank (J = 1)). Ei , for 0 � i, j � d, are known as the
primitive idempotent of Y. Let P and Q be the matrices relating our two bases for A:

Aj =
d∑

i=0

PijEi, 0 � j � d,

Ej = 1

n

d∑
i=0

QijAi, 0 � j � d

. (2.5)

Then clearly

PQ = QP = nI. (2.6)

It also follows that

AjEi = PijEi, (2.7)

which shows that Pij (resp. Qij ) is the ith eigenvalue (resp. the ith dual eigenvalue) of Aj

(resp. Ej ) and that the columns of Ei are the corresponding eigenvectors. Thus, mi =
rank(Ei) is the multiplicity of the eigenvalue Pij of Aj (provided that Pij �= Pkj for k �= i).
We see that m0 = 1,

∑
i mi = n and mi = trace Ei = n(Ei)jj (indeed, Ei has only eigenvalues

0 and 1, so rank(Ek) equals the sum of the eigenvalues). Also, by [24, 25], the eigenvalues
and dual eigenvalues satisfy

Pi0 = Qi0 = 1, P0i = ki, Q0i = mi

mjPji = kiQij , 0 � i, j � d.
(2.8)

2.3. The Terwilliger algebra and its modules

We now recall the dual Bose–Mesner algebra of Y. Given a reference vertex α ∈ V , for
all integers i define E�

i = E�
i (α) ∈ MatV (C) (0 � i � d) to be the diagonal matrix with

(β, β)-entry (
E�

i )β,β =
{

1 if (α, β) ∈ Ri,

0 otherwise,
(α ∈ V ). (2.9)

The matrix E�
i is called the ith dual idempotent of Y with respect to α. We shall always set

E�
i = 0 for i < 0 or i > d. From the definition, the dual idempotents satisfy the relations

d∑
i=0

E�
i = I, E�

i E
�
j = δijE

�
i , 0 � i, j � d. (2.10)
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It follows that the matrices E�
0, E

�
1, . . . , E

�
d form a basis for the subalgebra A� = A�(α)

of MatV (R). A� is known as the dual Bose–Mesner algebra of Y with respect to α. For
each integer i (0 � i � d), let A�

i = A�
i (α) denote the diagonal matrix in MatV (R) with

(β, β)-entry:

(A�
i )(β,β) = n(Ei)α,β (β ∈ V ). (2.11)

With reference to [24, 25] the matrices A�
0, A

�
1, . . . , A

�
d form a second basis for A� and satisfy

A�
0 = I, A�t

i = A�
i , A�t

i = A�
i , A�

0 + A�
1 + · · · + A�

d = nE�
0,

A�
i A

�
j =

d∑
h=0

qh
ijA

�
h.

(2.12)

Then by combining (2.5) with (2.9) and (2.11) we have

A�
j =

d∑
i=0

QijE
�
i , E�

j = 1

n

d∑
i=0

PijA
�
i , 0 � j � d. (2.13)

Let Y = (V , {Ri}0�i�d) denote a scheme. Fix any α ∈ V and write A� = A�(α). Let
T = T (α) denote the subalgebra of MatV (C) generated by A and A�. We call T the Terwilliger
algebra of Y with respect to α.

Let W = CV denote the vector space over C consisting of column vectors whose
coordinates are indexed by V and whose entries are in C. We observe MatV (C) which acts on
W by left multiplication. We endow W with the Hermitian inner product 〈,〉 which satisfies
〈u, v〉 = ut v̄ for all u, v ∈ W , where t denotes the transpose and - denotes the complex
conjugation. For all β ∈ V , let |β〉 denote the element of W with a 1 in the β coordinate and
0 in all other coordinates. We observe that {|β〉|β ∈ V } is an orthonormal basis for W . Using
(2.9) we have

E�
i W = span{|β〉|β ∈ V, (α, β) ∈ Ri}, 0 � i � d. (2.14)

Now using relations (2.10) we can show that the operator E�
i projects W onto E�

i W , thus W

can be written as direct sum of E�
i W, i = 0, 1, . . . , d , i.e.,

W = E�
0W ⊕ E�

1W ⊕ · · · ⊕ E�
dW. (2.15)

Similarly, using the idempotency relation (2.4), we can write

W = E0W ⊕ E1W ⊕ · · · ⊕ EdW. (2.16)

We call E�
i W the ith subconstituent of � = (V ,R) with respect to α.

By a T-module we mean a subspace U ⊆ W such that T U ⊆ U . Let U denote a
T-module. Then U is said to be irreducible whenever U is non-zero and U contains no T-
modules other than 0 and U. Let U denote an irreducible T-module. Then U is the orthogonal
direct sum of the non-zero spaces among E�

0U,E�
1U, . . . , E�

dU ([17], lemma 3.4). By the
endpoint of U we mean min{i|0 � i � d,E�

i U �= 0}. By the diameter of U we mean
|{i|0 � i � d,E�

i U �= 0}| − 1. We say U is thin whenever E�
i U has dimension at most

1 for 0 � i � d. There exists a unique irreducible T-module which has endpoint 0 ([26],
proposition 8.4). This module is called W0.

2.4. Stratification

We fix a point o ∈ V as an origin of the underlying graph, called reference vertex. Then,
relation (2.1) stratifies underlying graph into a disjoint union of associate classes Ri(o).
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Figure 2. (a) The underlying graph of group association scheme D10 with diameter d = 3 and
the stratification based on conjugacy relations, hence it has four strata, where strata 2, 3 have the
same distance from the reference stratum (stratum number 0). (b) The underlying graph of normal
subgroup scheme D10 (strongly regular graph) with diameter d = 2 and the stratification (with
three strata) based on distance function.

With each associate class Ri(o) we associate a unit vector in l2(V ) defined by

|φi〉 = 1√
ki

∑
α∈Ri(o)

|α〉 ∈ E�
i W, (2.17)

where |α〉 denotes the eigenket of αth vertex at the associate class Ri(o) and ki = |Ri(o)|.
The closed subspace of l2(V ) spanned by {|φi〉} is denoted by �(G). Since {|φi〉} becomes a
complete orthonormal basis of �(G), we often write

�(G) =
∑

i

⊕ C|φi〉. (2.18)

Let Ai be the adjacency matrix of a graph � = (V ,R) for reference state |φ0〉 (|φ0〉 = |o〉,
with o ∈ V as reference vertex, we have

Ai |φ0〉 =
∑

β∈Ri(o)

|β〉. (2.19)

Also, we have

Ai |φ0〉 = E�
i |φ0〉 ∈ E�

i W, E�
i Al|φ0〉 = δliAl|φ0〉 (2.20)

Then by using unit vectors |φi〉 and equations (2.19), (2.20), we have

Ai |φ0〉 =
√

ki |φi〉. (2.21)

For 0 � i � d, the vector |φi〉 of equation (2.17) is a basis for E�
i W0 ([17], lemma 3.6).

Therefore, W0 is thin with diameter d such that the module W0 is orthogonal to each
irreducible T-module other than W0 ([27], lemma 3.3).

At the end one should note that sometimes we can stratify a given graph (with adjacency
matrix A) in different ways, simply by considering it as the underlying graph of different
association schemes. For example, as it is shown in section 7, we can associate two different
association schemes for dihedral graph D2m (one of them is distance regular one) with the
same underlying graph (see figures 2(a) and (b)).
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3. CTQW on underlying graphs of association schemes

The CTQW on graph is defined by replacing Kolmogorov’s equation (master equation) of
continuous-time classical random walk on a graph [28, 29]

dPi(t)

dt
=

n∑
j=1

HijPj (t), i = 1, 2, . . . , n (3.22)

with Schrödinger’s equation, where the matrix H is Hamiltonian of walk and Pi(t) is the
occupying probability of vertex i at time t. It is natural to choose the Laplacian of the graph,
defined as L = A − D as Hamiltonian of walk, where D is a diagonal matrix with entries
Djj = deg(αj ). This is because we can view L as the generator matrix that describes an
exponential distribution of waiting times at each vertex.

CTQW was introduced by Farhi and Gutmann [5] (see also [8, 30]). Our treatment,
though, closely follow the analysis of Moore and Russell [30] which we review next. Let
l2(V ) denote the Hilbert space of C-valued square-summable functions on V . With each
α ∈ V we associate a ket defined by |α〉, then {|α〉, α ∈ V } becomes a complete orthonormal
basis of l2(V ).

For 0 � i � d the vector |φi〉 of equation (2.17) is a basis of E�
i W0, where W0 is unique

irreducible T-module which has endpoint 0 ([26], proposition 8.4). Therefore, Hilbert space
of CTQW starting from a given site corresponds to the irreducible (with starting site of walk
as a reference vertex of T-algebra) T-module W0 with maximal dimension. Hence, other
irreducible T-modules of Terwilliger algebra T are orthogonal to Hilbert space of the walk.

Let |φ(t)〉 be a time-dependent amplitude of the quantum process on graph �. The wave
evolution of the quantum walk is

ih̄
d

dt
|φ(t)〉 = H |φ(t)〉, (3.23)

where we assume h̄ = 1 and |φ0〉 is the initial amplitude wavefunction of the particle. The
solution is given by |φ0(t)〉 = e−iHt |φ0〉. On d-regular graphs, D = 1

d
I , and since A and D

commute, we get

e−itH = e−it (A− 1
d
I ) = e−it/d e−itA. (3.24)

This introduces an irrelevant phase factor in the wave evolution. Hence we can consider
H = A = A1. Then using equation (2.5) we have

|φ0(t)〉 = e−iAt |φ0〉 = e−i
∑d

i=0 Pi1Ei t |φ0〉, (3.25)

where using the algebra of idempotents, i.e., equation (2.4), the above amplitude of
wavefunction can be written as

|φ0(t)〉 =
d∑

i=0

e−iPi1tEi |φ0〉. (3.26)

Now using equations (2.5), (2.6), (2.17) and (2.21), the matrix elements of idempotent
operators between eigenstates strata and eigenstates of vertices can be calculated as

〈φk|Ei |φ0〉 = 〈φk|1

n

d∑
l=0

QliAl|φ0〉 = 1

n

d∑
l=0

Qli〈φk|Al|φ0〉 =
√

kk

n
Qki, (3.27)

〈β|Ei |φ0〉 = 1

n
Qki, for every |β〉 ∈ Rk(o), (3.28)

respectively.
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Finally multiplying (3.26) by |φk〉, |β〉 and using (3.27), (3.28), we get the following
expression for the amplitudes of observing the particle at vertex β and state |φk〉 at time t:

〈φk|φ0(t)〉 =
d∑

i=0

e−iPi1t 〈φk|Ei |φo〉 =
√

kk

n

d∑
i=0

e−iPi1tQki . (3.29)

〈β|φ0(t)〉 =
d∑

i=0

e−iPi1t 〈β|Ei |φo〉 = 1

n

d∑
i=0

e−iPi1tQki, for every |β〉 ∈ Rk(o),

(3.30)

respectively. Now, comparing (3.29) and (3.30), we get

〈β|φ0(t)〉 = 1√
kk

〈φk|φ0(t)〉, for every |β〉 ∈ Rk(o). (3.31)

Above relation indicates that the amplitudes of observing walk at vertices belonging to a
given stratum are the same. Actually, we can straightforwardly deduce from formula (3.30)
that absolute value of the matrix elements |〈β| e−itA|α〉| (the absolute value of probability
amplitudes of observing walk at time t at vertex β provided that walk starts at vertex α)
depends on the kind of relation between vertices α and β, i.e., |〈β| e−itA|α〉| is the same for
all (α, β) ∈ Rk(o). This is due to the fact that in an association scheme the colouring of
underlying graphs or the set of relations between vertices thoroughly determines everything.
Hence for a CTQW over a graph associated with a given scheme with diameter d, we have at
most (d + 1) different observing probabilities (i.e., the number of strata or number of distinct
eigenvalues of adjacency matrix).

At the end, by straightforward calculation, we can evaluate the average probability for
finite graphs of association schemes as

P̄ (β) = lim
T →∞

1

T

∫ T

0
Pt(β) dt = 1

n2

d∑
i=0

Q2
ki , (3.32)

for every |β〉 ∈ Rk(o), where in obtaining above formula it is assumed that Pi1 are all different
for i = 0, 1, . . . , d .

Obviously, by replacing A1 with Ai, i �= 0, 1, we can study walk on underlying graph
� = (V ,Ri). Definitely for a graph � = (V ,Ri), all of thus obtained results hold true
(except for formula (3.32)), provided that we replace index 1 with index i everywhere, such
as formulae (3.26) and (3.30).

Also we should note that the average probability of observing walk at vertex β given in
(3.32) is the same for all underlying graphs with different eigenvalues.

4. CTQW on underlying graph of group schemes

In this section, we briefly discuss CTQW on group schemes with real and complex
representations separately.

4.1. Group association schemes

In order to study the CTQW on group graphs, we need to study the group association schemes.
One of the most important sources of association schemes is groups. Let G be a transitive group
acting on a finite set V . Then G has a natural action on V × V given by g(α, β) = (gα, gβ)
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for g ∈ G and α, β ∈ V . The orbits {(gα, gβ)|g ∈ G} of V × V are called orbitals. Further,
we assume that the group G acting on V to be generously transitive, i.e., for every pair
(α, β) ∈ V ×V , there is a group element g ∈ G that interchanges α and β, that is gα = β and
gβ = α. For generously transitive G, the orbitals form the relations of the association scheme.
Now, in the following, we consider the orbitals which correspond to the conjugacy classes of G.
Let G be a finite group, C0 = {e}, C1, . . . , Cd the conjugacy classes of G. Let G×G act on G
with the action defined by β(α1, α2) = α−1

1 βα2 where β, α1, α2 ∈ G. Then the diagonal action
of G×G on G×G is given by (β, γ )(α1, α2) = (β(α1, α2), γ (α1, α2)) = (

α−1
1 βα2, α

−1
1 γα2

)
.

We can show that (β1, β2), (γ1, γ2) ∈ G × G belong to the same orbital of G × G if and only
if β−1

1 β2, γ
−1
1 γ2 belong to the same conjugacy class of G. Thus, in this case the orbitals

correspond to the conjugacy classes of G. For i = 0, 1, . . . , d define

Ri = {(α, β)|α−1β ∈ Ci}, (4.33)

then Ri are the orbitals of G × G and hence X(G) = (G, {Ri}0�i�d) becomes a commutative
association scheme and it is called the group association scheme of the finite group G [25].
Definitely relations (4.33) imply that Ri(e) = Ci , where e is the unit element of group G. We
define class sums C̄i for i = 0, 1, . . . , d as

C̄i =
∑
γ∈Ci

γ ∈ CG, (4.34)

then for regular representation we have C̄i |α〉 = ∑
γ∈Ci

|γα〉. Therefore, in regular
representation the class sums C̄i (i = 0, 1, . . . , d) have the following matrix elements:

(C̄i)α,β =
{

1 if (α, β) ∈ Ci,

0 otherwise,
(α, β ∈ G). (4.35)

Comparing the above matrix elements with those of adjacency matrices given in (2.4), we
see that the class sums are the corresponding adjacency matrices of group association scheme
with the relation defined through conjugation. It is well known that the class sums of finite
group G form the basis of centre of its CG ring which is certainly a commutative algebra,
hence they are closed under multiplication defined in CG, i.e., we have

C̄iC̄j =
d∑

k=0

pk
ij C̄k

(see details in [31]), where pk
ij (i, j, k = 0, 1, . . . , d) are the intersection numbers of the group

association scheme X(G) and have the following form:

pk
ij = |Ci ||Cj |

|G|
∑

χ

χ(αi)χ(αj )χ(αk)

χ(1)
, (4.36)

where the sum is over all the irreducible characters χ of G [32]. Therefore, the idempotents
{E0, E1, . . . , Ed} of the group association scheme X(G) are the projection operators of CG-
module, i.e.,

Ek = χk(1)

|G|
∑
α∈G

χk(α
−1)α. (4.37)

Thus, eigenvalues of adjacency matrices of Ak and idempotents Ek , respectively, are

Pik = dikk

mi

χi(αk), Qik = dkχk(αi), (4.38)

where dj = χj (1). The above-defined group scheme is in general non-symmetric scheme and
it can be symmetric provided that we choose a group whose whole irreducible representations
of chosen group are real, such as symmetric group Sn. In appendix A, we have explained how
to construct a symmetric group association scheme from a non-symmetric one.
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4.1.1. CTQW on underlying graph of group schemes with real representations. In a finite
group G with real conjugacy classes C0 = {e}, C1, . . . , Cd , i.e., C(α) = C(α−1) for all α ∈ G,
all irreducible characters χi are real. Thus using (4.38) we can study CTQW on its underlying
graph, where the amplitude of observing the particle at stratum k at time t, i.e., equation (3.30),
reduces to

〈φk|φ0(t)〉 =
√

kk

n

d∑
i=0

di e
−idi k1χi (α1)t

mi χi(αk), (4.39)

also the average probabilities over large times become

P̄ (k) = kk

n2

d∑
i=0

d2
i |χi(αk)|2, k = 0, 1, . . . , d. (4.40)

Therefore, the probability of observing the walk at starting vertex, i.e., the staying probability,
is

P̄ (0) = k0

n2

d∑
i=0

d2
i |χi(0)|2 = 1

n2

d∑
i=0

d4
i . (4.41)

As examples we will study CTQW on G = Sn,D2m graphs in section 7.

4.1.2. CTQW on underlying graph of group schemes with complex representations. In
general, all conjugacy classes of a given finite group are not real, hence some of its irreducible
representations become complex and consequently we encounter with directed underlying
graph or non-symmetric association scheme. But following instruction of appendix A we can
generate a symmetric association scheme out of non-symmetric association scheme. Thus in
this case, for CTQW on underlying graph of group schemes with complex representations, we
need to use formulae (A.5) and (A.7) of appendix A, where the amplitude of observing the
particle at stratum k at time t, i.e., equation (3.30), is

〈φk|φ0(t)〉 =


√
kk

n

∑l
i=0 di e

−idi k1χi (α1)t

mi χi(αk) for real representation,
√

kk

n

∑ d+l
2

i=l+1 di e
−idi k1(χi (α1)+χi (α1))t

mi (χi(αk) + χi(αk)) for non-real representation.

(4.42)

Also, the average probabilities are

P̄ (k) =
{

kk

n2

∑l
i=0 d2

i |χi(αk)|2 for real representation,
kk

n2

∑ d+l
2

i=l+1 d2
i |(χi(αk) + χi(αk))|2 for complex representation.

(4.43)

In this case, the staying probability is

P̄ (0) = k0

n2

 l∑
i=0

d2
i |χi(0)|2 + 4

d+l
2∑

i=l+1

d2
i |(χi(0)|2

 = 1

n2

 l∑
i=0

d4
i + 4

d+l
2∑

i=l+1

d4
i

 . (4.44)

As an example we will study G = Cn in section 7.

5. Distance regular graphs

Here in this section we consider some set of important graphs called distance regular graphs,
where the relations are based on distance function defined as follows: a finite sequence
α0, α1, . . . , αn ∈ V is called a walk of length n (or of n steps) if αk−1 ∼ αk for all
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α
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1+ia  
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β

Γ Γ Γ Γ

Figure 3. Edges through α and β in a distance regular graph.

k = 1, 2, . . . , n. For α �= β let ∂(α, β) be the length of the shortest walk connecting α

and β, therefore ∂(α, β) gives the distance between vertices α and β hence it is called the
distance function and we have ∂(α, α) = 0 for all α ∈ V and ∂(α, β) = 1 if and only if α ∼ β.
Therefore, the distance regular graphs become metric spaces with the distance function ∂ .

An undirected connected graph � = (V ,R1) is called distance regular graph if it is the
underlying graph of an association scheme with relations defined as (α, β) ∈ Ri if and only if
∂(α, β) = i, for i = 0, 1, . . . , d, where d := max{∂(α, β) : α, β ∈ V } is called the diameter
of graph. Usually, in distance regular graphs the relations Ri are denoted by �i .

Now, in any connected graph, for every β ∈ �i(α), we have

�1(β) ⊆ �i−1(α) ∪ �i(α) ∪ �i+1(α). (5.45)

Hence in a distance regular graph, pi
j1 = 0 (for i �= 0, j is not {i −1, i, i +1}) and the non-zero

intersection numbers are denoted by

ai = p0
ii , bi = pi

i−1,1, ci = pi
i+1,1, (5.46)

respectively (see figure 3).
Then, by using equation (5.46) and Bose–Mesner algebra (2.3), for adjacency matrices

of distance regular graph �, we have

A1Ai = ci−1Ai−1 + (a1 − bi − ci)Ai + bi+1Ai+1, for i = 1, 2, . . . , d − 1,

A1Ad = cd−1Ad−1 + (a1 − bd)Ad.
(5.47)

Using the recursion relations (5.47), we can show that Ai is a polynomial in A1 of degree i,
i.e., we have

Ai = Pi(A1), i = 1, 2, . . . , d, (5.48)

and conversely Ai
1 can be written as a linear combination of I, A1, . . . , Ai .

Now, we quote a lemma which is crucial to deduce that the distance regular graphs possess
natural quantum decomposition structure (introduced in [1, 21]) stemming from Terwilliger
algebra representation.

Lemma 1 (Terwilliger [17]). Let � denote a distance regular graph with diameter d. Fix
any vertex α of � and write E�

i = E�
i (α) (0 � i � d), A = A1 and T = T (α). Define

A− = A−(α),A0 = A0(α),A+ = A+(α) as elements of Terwilliger algebra by

A− =
d∑

i=1

E�
i−1AE�

i , A0 =
d∑

i=1

E�
i AE�

i , A+ =
d∑

i=1

E�
i+1AE�

i . (5.49)

Then,

A = A+ + A− + A0, (5.50)
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where this is the quantum decomposition of adjacency matrix A such that

(A−)t = A+, (A0)t = A0, (5.51)

where it can be verified easily.

In the case of distance regular graphs, the strata states |φk〉 are the same as defined by
(2.17) of subsection 2.4, and further by using equations (5.47) and (5.50) we can show that
the raising and lowering operators given by (5.49) act over them as follows:

A+|φk〉 = √
ωk+1|φk+1〉, k � 0, (5.52)

A−|φ0〉 = 0, A−|φk〉 = √
ωk|φk−1〉, k � 1, (5.53)

A0|φk〉 = (αk+1)|φk〉, k � 0. (5.54)

As mentioned in section 2, |φk〉, k = 0, 1, . . . , d, form a basis for W0 which is the irreducible
T-module with maximal dimension, therefore all basis of the irreducible T-module W0 can be
obtained by repeated action of raising operator A+ on reference state |φ0〉 and we have

ωk = ck−1bk, αk = a1 − bk−1 − ck−1 (5.55)

similar to [1], where ak, bk and ck are already defined by relations given in (5.46). The space
W0 equipped with set of operators (�,A+, A−, A0) is an interacting Fock space associated
with the Jacobi sequence {ck−1bk, a1 − bk − ck, k = 1, 2, . . .}.

Summarizing all above-mentioned properties of distance regular graphs stemming from
the algebraic combinatorics structures of these particular association schemes, specially
existence of raising and lowering operators given by (5.49) acting on bases of irreducible
T-module W0, and comparing these properties with those of QD graphs of [1, 21], we can
deduce that distance regular graphs possess quantum decomposition and using it we can find
their spectrum by spectral distribution method of [1, 21]. Of course there are some differences
between distance regular graphs and those QD graphs of [1, 21]. As an example, in distance
regular graphs stratification is reference state independent, namely we can choose every vertex
as a reference state (therefore we can study CTQW via spectral distribution method of [1]
irrespective of the starting site), while the stratification of graphs of [1] is reference dependent
and we cannot stratify them for every choice of reference state.

We should know that, in general, it is hard to find the spectrum of a given Bose–Mesner
algebra and the spectral distribution method works rather elegantly, only in cases of distance
regular graphs (for more detail see [33]).

6. Investigation of CTQW on distance regular graphs via spectral distribution of
adjacency matrix

The spectral analysis of operators is an important issue in quantum mechanics, operator
theory and mathematical physics [34, 35]. As an example µ(dx) = |ψ(x)|2 dx (µ(dp) =
|ψ̃(p)|2 dp) is the spectral distribution of position (momentum) operator X̂(P̂ ) assigned to
quantum state |ψ〉.

It is well known that for any pair (A, |φ0〉) of a matrix A and a vector |φ0〉 a measure µ

can be assigned as follows (for more details see [33]):

µ(x) = 〈φ0|E(x)|φ0〉, (6.56)

where E(x) is the operator of projection onto the eigenspace of A corresponding to eigenvalue
x, i.e.,

A =
∫

xE(x) dx. (6.57)
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It is easy to see that for any polynomial P(A) we have

P(A) =
∫

P(x)E(x) dx, (6.58)

where for discrete spectrum the above integrals are replaced by summation.
Therefore, using relations (6.56) and (6.58), the expectation value of powers of adjacency

matrix A = A1 over reference state |φ0〉 can be written as

〈Am〉 =
∫

R

xmµ(dx), m = 0, 1, 2, . . . , (6.59)

where, according to [21], 〈Am〉 coincides with the number of m-step walks starting and
terminating at o. Then the existence of a spectral distribution satisfying (6.59) is a consequence
of Hamburger’s theorem, see e.g., ([36], theorem 1.2).

Now, in the case of distance regular graphs, according to (5.48), the adjacency matrices are
of polynomial functions of A; hence, using (2.21) and (6.59) the matrix elements 〈φk|Am|φ0〉
can be written as

〈φk|Am|φ0〉 = 1√
ak

〈φ0|AkA
m|φ0〉 = 1√

ak

〈φ0|Pk(A)Am|φ0〉

= 1√
ak

∫
R

xmPk(x)µ(dx), m = 0, 1, 2, . . . . (6.60)

One of our goals in this paper is the evaluation of amplitude for CTQW on distance regular
graphs by using equation (6.60) such that we have

〈φk| e−iAt |φ0〉 = 〈φk|φ0(t)〉 = 1√
ak

∫
R

e−ixtPk(x)µ(dx), (6.61)

where 〈φk|φ0(t)〉 is the amplitude of observing the particle at level k at time t. The conservation
of probability

∑
k=0 |〈φk|φ0(t)〉|2 = 1 follows immediately from equation (6.61) by using

the completeness relation of orthogonal polynomials Pn(x). Obviously, the evaluation of
〈φk|φ0(t)〉 leads to the determination of the amplitudes at sites belonging to the associate
scheme (stratum) �k(o). Again according to (3.30), walk has the same amplitude at all sites
belonging to the same associated class or stratum (this is in agreement with the lemma proved
in appendix I of [1]).

Formula (6.61) indicates a canonical isomorphism between the interacting Fock space
CTQW on distance regular graphs (Hilbert space of CTQW starting from a given site, i.e.,
strata states or more precisely W0 the irreducible T-module with maximal dimension) and
the closed linear span of the orthogonal polynomials generated by recursion relations (5.47).
This isomorphism was meant to be a reformulation of CTQW (on distance regular graphs),
which describes quantum states by polynomials (describing quantum state |φk〉 by Pk(x)), and
make a correspondence between functions of operators (q-numbers) and functions of classical
quantity (c-numbers), such as the correspondence between e−iAt and e−ixt . This isomorphism
is similar to the isomorphism between Fock space of annihilation and creation operators a, a†

with space of functions of coherent states parameters in quantum optics, or the isomorphism
between Hilbert space of momentum and position operators, and spaces of function defined
on phase space in Wigner function formalism. At the end, formula (6.61) paves the way
to approximate infinite graphs with finite ones and vice versa, simply via Gauss quadrature
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formula, where in cases of infinite graphs we can study asymptotic behaviour of walk at
large enough times by using the method of stationary phase approximation (for more details
see [1]).

Indeed, the determination of µ(x) is the main problem in the spectral theory of operators,
where in the case of distance regular graphs this is quite possible by using the continued
fractions method, as it is explained in appendix B.

Finally, using the spectral distribution µ(x) given in (B.3), formula (6.61) reduces to

〈φk|φ0(t)〉 = 1√
ak

∑
l

Bl e−ixl tPk(xl), (6.62)

where by straightforward calculations we can evaluate the average probabilities of distance
regular graphs as

P̄ (k) = lim
T →∞

1

T

∫ T

0
|〈φk|φ0(t)〉|2 dt = 1

ak

∑
l

B2
l P

2
k (xl). (6.63)

At the end, we should note that in the case of distance regular graphs we have exactly (d + 1)

different probability amplitudes.

7. Examples

7.1. Underlying graphs of group association schemes

Here in this subsection we study CTQW on underlying graphs of group association schemes
by using the prescriptions of section 4.

7.1.1. Symmetric group Sn. The symmetric group Sn is ambivalent in the sense that
C(α) = C(α−1) for all α ∈ Sn, therefore its conjugacy classes form a symmetric association
scheme.

For group Sn, conjugacy classes are determined by the cycle structures of elements when
they are expressed in the usual cycle notation. The useful notation for describing the cycle
structure is the cycle type [ν1, ν2, . . . , νn], which is the listing of number of cycles of each
length (i.e., ν1 is the number of one cycles, ν2 is that of two cycles and so on). Thus, the
number of elements in a conjugacy class or stratum is given by∣∣C[ν1,ν2,...,νn]

∣∣ = n!

ν1!2ν2ν2! · · · nνnνn!
. (7.64)

On the other hand, a partition λ of n is a sequence (λ1, . . . , λn) where λ1 � · · · � λn and
λ1 + · · · + λn = n, where in terms of cycle types

λ1 = ν1 + ν2 + · · · + νn, λ1 = ν2 + ν3 + · · · + νn, . . . , λn = νn. (7.65)

The notation λ � n indicates that λ is a partition of n. There is one conjugacy class
for each partition λ � n in Sn, which consists of those permutations having cycle structure
described by λ. We denote by Cλ the conjugacy class of Sn consisting of all permutations
having cycle structure described by λ. Therefore, the number of conjugacy classes of Sn,
namely the diameter of its scheme, is equal to the number of partitions of n, which grows
approximately by 1

4π
√

3
eπ

√
2n/3. We consider the case where the generating set consists of the
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set of all transposition, i.e., C1 = C[2,1,1,1,1,...,1]. For the characters at the transposition, it is
known that [37]

χλ(α1) = 2!(n − 2)!dim(ρλ)

n!

∑
j

((
λj

2

)
−

(
λ′

j

2

))
. (7.66)

Here, λ′ is the partition generated by transposing the Young diagram of λ, while λ′
j and λj

are the j th components of the partitions λ′ and λ, and ρλ is the irreducible representation
corresponding to partition λ.

Then, the eigenvalues of its adjacency matrix can be written as

Pλ1 = dλk1

mλ

χλ(α1) =
∑

j

((
λj

2

)
−

(
λ′

j

2

))
. (7.67)

Therefore, by using equations (4.39) and (7.66) we can obtain the amplitudes on underlying
graph of symmetric groups scheme. As an example, we obtain amplitude for associate class
of conjugacy class of n-cycles as

〈φn|φ0(t)〉 = (−2i sin(nt/2))n−1

√
nn!

, (7.68)

where the results thus obtained are in agreement with those of [38].
In the above calculation, we have used the following results for the characters of the

n-cycles:

χλ((n)) =
{
(−1)n−k for λ = (k, 1, . . . , 1), k ∈ {1, . . . , n}
0 otherwise

and

χ(k,1,...,1)(id) = dim(ρ(k,1,...,1)) =
(

n − 1
k − 1

)
, Pλ1 = 1

2
(2nk − n2 − n).

In the remaining part of this section, we study CTQW on underlying graph of group
association scheme S4, with diameter d = 4, in details. To do so, we need to have its
conjugacy classes that are given by

C0 = {1}, C1 = {(12), (13), . . .}, C2 = {(123), (124), . . .},
C3 = {(12)(34), (13)(24), (14)(23)}, C4 = {(1234), (1243), . . .}.

(7.69)

Now, using (4.35) we can obtain its adjacency matrices Ai = C̄i, i = 0, 1, . . . , 4, which
satisfy the following Bose–Mesner algebra:

C̄2
1 = 6C̄0 + 3C̄2 + 2C̄3, C̄1C̄2 = 4C̄1 + 4C̄4, C̄1C̄3 = C̄1 + 2C̄4, C̄1C̄4 = 4C̄2 + 4C̄3,

C̄2
2 = 8C̄0 + 4C̄2 + 8C̄3, C̄2C̄3 = 3C̄2, C̄2C̄4 = 4C̄1 + 4C̄4,

C̄2
3 = 3C̄0 + 2C̄3, C̄3C̄4 = 2C̄1 + C̄4, C̄4

2 = 6C̄0 + 3C̄2,

(7.70)

above algebra indicates that group scheme S4 is not a distance regular scheme (actually group
scheme Sn is a distance regular one, only for n = 3).

Now, using its adjacency matrices or dual idempotents, we can stratified its underlying
graph with adjacency matrix A = C̄1. As it is shown in figure 4, it has five strata and strata 2, 3
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3 
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4 

Figure 4. The graph of symmetric group S4, it has five strata, where strata 2, 3 have the same
distance from the reference stratum (stratum number 0).

have the same distance from the reference stratum (stratum number 0). Using equations (4.39)
and (7.66), we can calculate the probability amplitudes of strata as

〈φ0|φ0(t)〉 = 1

6
(1 + 2 cos3(2t)),

〈φ1|φ0(t)〉 = −i√
6
(3 sin(2t) − 2 sin3(2t)),

〈φ2|φ0(t)〉 = 2

3
√

8
(−1 + 4 cos3(2t) − 3 cos(2t)),

〈φ3|φ0(t)〉 = 1

4
√

3
(1 + 4 cos3(2t) − 6 cos(2t)),

〈φ4|φ0(t)〉 = 2i√
6

sin3(2t).

(7.71)

We should note that even though strata 2 and 3 have the same distance from the reference
stratum, but have different amplitudes, therefore the probability amplitudes of CTQW on
underlying graph of association scheme S4 do not depend on their distance from walk starting
site (we expect that this holds true for all non-distance regular schemes). Also the number of
different amplitudes is the same as the number of strata.

7.1.2. Dihedral group D2m. The dihedral group G = D2m is the semi-direct product of
cyclic groups Zm and Z2 with corresponding generators a and b. Hence, it is generated by
generators a and b with following relations:

D2m = 〈a, b : am = b2 = 1, b−1ab = a−1〉. (7.72)

In finding its conjugacy classes, it is convenient to consider whether m is odd or even.
Hence, we will study CTQW on underlying graph of dihedral group D2m scheme for odd and
even m separately.
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1. m = odd. The dihedral group D2m has precisely 1
2 (m + 3) conjugacy classes (see

figure 2(a)):

C0 = {1}, C1 = {b, ab, a2b, . . . , am−1b},
C2 = {a, a−1}, . . . , Cm+1

2
= {a(m−1)/2, a−(m−1)/2} (7.73)

(for more details see [31]).
By using equations (4.38) and (3.30) we obtain the following amplitudes:

〈φk|φ0(t)〉 =


1
m

((m − 1) + cos(mt)) for k = 0
1√
m

(−i sin(mt)) for k = 1
√

2
m

(cos(mt) − 1) for k = 2, 3, . . . , (m + 1)/2.

(7.74)

Using equation (3.32) we obtain the following average probabilities for strata k at time t:

P̄ (k) =


1

m2

(
(m − 1)2 + 1

2

)
for k = 0

1
2m

for k = 1
3

m2 for k = 2, 3, . . . , (m + 1)/2.

(7.75)

2. m = even. The dihedral group D2m (m = 2l) has precisely l + 3 conjugacy classes:

C0 = {1}, C1 = {al}, C2 = {a, a−1}, . . . , Cl = {al−1,a−l+1}
Cl+1 = {a2j b : 0 � j � l − 1}, Cl+2 = {a2j+1b : 0 � j � l − 1}

(7.76)

(for more details see [31]).
Now, in order to get an association scheme with connected underlying graph, we have to

define a new scheme based on the following conjugacy classes:

C̃0 = C0, C̃1 = Cl+1 ∪ Cl+2, C̃2 = C1, C̃3 = C2, C̃4 = C3, . . . , C̃l+1 = Cl.

(7.77)

In this case, the calculation of amplitudes and average probabilities of CTQW on connected
underlying graph with adjacency matrix A = ∑

γ∈C̃1
γ is similar to that of dihedral groups

with odd m.
Formula (7.74) indicates that we have only three different probability amplitudes, even

through the association schemes (7.73) associated with dihedral group D2m (for odd m) have
diameter d = [

n
2

]
+ 1, namely the number of different amplitudes is less than (d + 1). This is

true for even values of m too.

7.1.3. Cycle graph Cn. A cycle graph or cycle is a graph that consists of some number
of vertices connected in a closed chain. The cycle graph with n vertices is denoted by Cn,
where its graphical representation cyclic group Zn = 〈α〉, with αn = 1. In this case, we
consider the orbitals to correspond to the conjugacy classes of cyclic group. Also, we give
C̃ = C(α) ∪ C(α−1) for all α ∈ Zn, therefore the relations Ri form a symmetric association
scheme with d classes on Cn (called the conjugacy scheme of Cn). Let ωj = e2πij/n for
j = 0, 1, . . . , n − 1. Using the properties of characters of cyclic group, and equations (A.4)
and (A.5), we obtain

P̃j1 = χj (1) + χj (n − 1) = ωj + ωn−1
j = 2 cos(2πj/n).

Q̃kj = χk(j) + χk(n − j) = 2 cos(2πjk/n).
(7.78)
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Therefore by using equation (3.30), for strata k, we have

〈φk|φ0(t)〉 =
{ 1

n

(
e−it + 2

∑d
j=0 e−it cos(2πj/n)

)
for k = 0

√
2

n

(
e−it + 2

∑d
j=0 e−it cos(2πj/n) cos(2πjk/n)

)
for k = 1, 2, . . . , d,

(7.79)

where the results thus obtained are in agreement with those of [1, 39]. Thus, we can evaluate
the average probability of staying at origin for large time as follows (equation (4.44)):

P̄ (0) = 1

n2

1 + 4
d∑

j=1

cos2(0)

 = 1

n2
(1 + 4d), (7.80)

and using equation (3.32) we get the following average probabilities to stratum k:

P̄ (k) = 2

n2
(1 + 4

d∑
j=1

cos2(2πjk/n))). (7.81)

Here we have considered odd n, and the calculation for even n is similar to that of cycle graph
with the odd one.

7.2. Examples of distance regular graphs

In this subsection, we study CTQW on some important distance regular graphs via spectral
distributions of their corresponding adjacency matrices.

7.2.1. Strongly regular graphs. Here, we study CTQW on some important distance regular
graphs of diameter 2, called strongly regular graphs.

A graph (simple, undirected and loopless) of order n is strongly regular with parameters
n, κ, λ, η whenever it is not complete or edgeless and

(i) each vertex is adjacent to κ vertices,
(ii) for each pair of adjacent vertices there are λ vertices adjacent to both,

(iii) for each pair of non-adjacent vertices there are η vertices adjacent to both.

For strongly regular graph, the intersection numbers are given by

a1 = κ; b1 = 1, b2 = η; c0 = κ, c1 = κ − λ − 1. (7.82)

By using formula (B.4) we can straightforwardly get the following spectral distribution:

µ = B1δ(x − x1) + B2δ(x − x2) + B3δ(x − x3), (7.83)

where we obtain xi and Bi for i = 1, 2, 3, respectively, as

x1 = κ,

x2 = 1

2
(λ − η +

√
(λ − η)2 − 4(η − κ)),

x3 = 1

2
(λ − η −

√
(λ − η)2 − 4(η − κ)),

(7.84)

B1 = η

κ2 − κ(λ − η) + (η − κ)
,

B2 = −κ
√

(λ − η)2 − 4(η − κ) + κ(λ − η) + 2κ

(λ − η − 2κ)
√

(λ − η)2 − 4(η − κ) + (λ − η)2 − 4(η − κ)
,

B3 = κ
√

(λ − η)2 − 4(η − κ) + κ(λ − η) + 2κ

(−λ + η + 2κ)
√

(λ − η)2 − 4(η − κ) + (λ − η)2 − 4(η − κ)
.

(7.85)
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Figure 5. The Petersen graph.

Again using equation (6.61) we can obtain the amplitudes for quantum walk at strata k and
time t.

In the remaining part of subsection (7.2.1), we study CTQW on the following two well-
known strongly regular graphs.

(A) Petersen graph
Petersen graph [22] is strongly regular graph with parameters (n, κ, λ, η) = (10, 3, 0, 1) (see
figure 5).

The intersection numbers and spectral distribution are

a1 = 3, a2 = 6; b1 = b2 = 1; c0 = 3, c1 = 2.

µ = 1
10δ(x − 3) + 1

2δ(x − 1) + 2
5δ(x + 2).

(7.86)

Therefore, the amplitudes for walk at time t are

〈φ0|φ0(t)〉 =
∫

R

e−ixtµ(dx) = 1

2
e−it +

2

5
e2it +

1

10
e−i3t

〈φ1|φ0(t)〉 = 1√
3

∫
R

x e−ixtµ(dx) = 1√
3

(
1

2
e−it − 4

5
e2it +

3

10
e−i3t

)
〈φ2|φ0(t)〉 = 1√

6

∫
R

(x2 − 3) e−ixtµ(dx) = 1√
6

(
−e−it +

2

5
e2it +

2

5
e−i3t

)
.

(7.87)

(B) Normal subgroup scheme
A partition of finite group G into sets P = {P0, P1, . . . , Pd} is a blueprint [22] if

(i) P0 = {e},
(ii) for i = 1, 2, . . . , d if g ∈ Pi then g−1 ∈ Pi ,

(iii) the set of relations Ri = {(α, β) ∈ G ⊗ G|α−1β ∈ Pi} on G form an association scheme.
The set of real conjugacy classes given in appendix A is an example of blueprint on G.
Also similar to group symmetric scheme, we can show that in regular representation the
class sums P̄i for i = 0, 1, . . . , d defined as

P̄i =
∑
γ∈Pi

γ ∈ CG, i = 0, 1, . . . , d (7.88)

are the adjacency matrices of blueprint scheme.
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Now, we define a blueprint scheme for group G which is a strongly regular graph. If H is
a normal subgroup of G, we define the blueprint classes by

P0 = {e}, P1 = G − {H }, P2 = H − {e}. (7.89)

This blueprint scheme is a strongly regular graph with the following Bose–Mesner algebra:

P̄ 2
1 = (|G| − |H |)P̄0 + (|G| − 2|H |)P̄1 + (|G| − |H |)P̄2, P̄ 1P̄2 = (|H | − 1)P̄2,

P̄ 2
2 = (|H | − 1)P̄0 + (|H | − 2)P̄2.

(7.90)

Hence, it has the following intersection numbers and parameters:

a1 = |G| − |H |; b1 = 1, b2 = |G| − |H |; c0 = |G| − |H |, c1 = |H | − 1;
(7.91)

and parameters (n, κ, λ, η) = (|G|, |G| − |H |, |G| − 2|H |, |G| − |H |), respectively.
It is interesting to note that in the normal subgroup scheme the intersections numbers and

other parameters depend only on the cardinalities of group and its normal subgroup.
As an example, we consider G = D2m, where its normal subgroup is H = Zm. Therefore,

the blueprint classes are given by

P0 = {e}, P1 = {b, ab, a2b, . . . , am−1b}, P2 = {a, a2, . . . , a(m−1}, (7.92)

which form a strongly regular graph (see figure 2(b)) with the following intersection numbers
and parameters:

a1 = m, a2 = m − 1; b1 = 1, b2 = m; c0 = m, c1 = m − 1;
(7.93)

and parameters (2m,m, 0,m), respectively. Using equations (7.83)–(7.85), we get the
following expressions for the spectral distribution:

µ = 1

2m
δ(x − m) +

m − 1

m
δ(x) +

1

2m
δ(x + m). (7.94)

Therefore, the amplitudes for walk at time t are

〈φ0|φ0(t)〉 = 1

m
((m − 1) + cos(mt)), 〈φ1|φ0(t)〉 = 1√

m
(−i sin(mt))

〈φ2|φ0(t)〉 =
√

m − 1

m
(cos(mt) − 1).

(7.95)

Also using equation (6.63) we evaluate the average probabilities as

P̄ (k) =


1
m2

(
(m − 1)2 + 1

2

)
for k = e

1
2m

for k = 1
3(m−1)

2m2 for k = 2.

(7.96)

Formula (7.95) indicates that these amplitudes are the same as those given in (7.73),
since the dihedral scheme D2m of subsection 7.1.2 and normal subgroup scheme D2m have
the same underlying graph (see figures 2(a) and (b)). Also we have three different probability
amplitudes, which are the same as the number of its strata, namely the number of different
amplitudes is exactly equal to (d + 1) in this case (because it is a distance regular graph).
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Figure 6. The Johnson graph J (4, 2).

7.2.2. Johnson graph. The Johnson graph J (v, d) has all d-subsets of a fixed v-subset as its
vertices, with two d-subsets adjacent if and only if they intersect in exactly d − 1 elements.
Two d-subsets are then at distance i if and only if they have exactly d − i elements in common
(see figure 6). Its intersection numbers are given by

ai = d!(v − d)!

(i!)2(d − i − 1)!(v − d − i − 1)!
, 1 � i � d,

bi = i2, 1 � i � d,

ci = (v − d − i)(d − i), 0 � i � d − 1,

(7.97)

By symmetry we may assume that 2d � v. Consider the growing family of Johnson
graphs J (v, d), where d → ∞ and 2d

v
→ p ∈ (0, 1]. Then, the associated orthogonal

polynomials are as follows (for more details see [40]):

(A) For p = 1, we have Laguerre polynomials Ln(x) with the following recurrence formula:

L0(x) = 1,

L1(x) = x − 1,

xLn(x) = Ln+1(x) + (2n + 1)Ln(x) + n2Ln−1(x), n � 1.

(7.98)

By using the fact that the Laguerre polynomials are orthogonal polynomials with respect to
the spectral distribution e−x dx and following paper [1] we obtain the following amplitudes:

〈φk|φ0(t)〉 = (it)k

(1 + it)k+1
. (7.99)

(B) For 0 � p � 1, by modifying the Meixner polynomials Mn(x) we have the recurrence
formula

M0(x) = 1, M1(x) = x,

xMn(x) = Mn+1(x) +
2n√

p(2 − p)
Mn(x) + n2Mn−1(x), n � 1.

(7.100)

Hence by using the fact that the Meixner polynomials are orthogonal polynomials with respect
to the spectral distribution

∑∞
k=0

2(1−p)

2−p

(
p

2−p

)k
δ
(
x − −p+2(1−p)k√

p(2−p)

)
and equation (6.61) we can

obtain the amplitudes. As an example, we obtain the amplitude at the origin at time t as

〈φ0|φ0(t)〉 =
∞∑

k=0

2(1 − p)

2 − p

(
p

2 − p

)k

e−i −p+2(1−p)k√
p(2−p)

t
. (7.101)
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7.2.3. Product of association schemes. In this section, we recall some basic facts about the
symmetric product of trivial schemes (see [41] for more details). This product is important
not only as a means of constructing new association schemes from the old ones, but also
for describing the structure of certain schemes in term of particular sub-schemes or schemes
whose structure may already be known. Then using equation (3.30) and (6.61) we can evaluate
amplitudes of CTQW on new association schemes. The symmetric product of d-tuples of trivial
scheme Kn with adjacency matrices of In, Jn − In is association scheme with the following
adjacency matrices (generators of its Bose–Mesner algebra):

A0 = In ⊗ In ⊗ · · · ⊗ In,

A1 =
∑

permutation

(Jn − In) ⊗ In ⊗ · · · ⊗ In,

...

Ai =
∑

permutation

(Jn − In) ⊗ (Jn − In) · · · ⊗ (Jn − In)︸ ︷︷ ︸
i

⊗In ⊗ · · · ⊗ In,

(7.102)

where Jn is n × n matrix with all matrix elements equal to 1. This scheme is the well-known
Hamming scheme (see figure 1) with intersection number

ai = (n − 1)id(d − 1) · · · (d − i + 1)

i!
, 1 � i � d,

bi = i, 1 � i � d,

ci = (n − 1)(d − i), 0 � i � d − 1,

(7.103)

where its underlying graph is the Cartesian product of d-tuples of cyclic group Zn. Following
[1], the amplitudes of walk and the spectral distribution in the symmetric product of graphs
can be obtained in terms of sub-graphs. Finally, we obtain the following expression for the
amplitude at origin and spectral distribution:

µ =
d∑

l=0

(n − 1)d−ld!

ndl!(d − l)!
δ(x − nl + d),

〈φ0|φ0(t)〉 =
d∑

l=0

(n − 1)d−ld!

ndl!(d − l)!
e−it (nl−d),

(7.104)

respectively.
Also we can show that its idempotents {E0, E1, . . . , Ed} are symmetric product of d-tuples

of corresponding idempotents of trivial schemes Kn. That is, we have

E0 = Jn

n
⊗ Jn

n
⊗ · · · ⊗ Jn

n
,

E1 =
∑

permutation

(
In − Jn

n

)
⊗ Jn

n
⊗ · · · ⊗ Jn

n
,

...

Ei =
∑

permutation

(
In − Jn

n

)
⊗

(
In − Jn

n

)
· · · ⊗

(
In − Jn

n

)
︸ ︷︷ ︸

i

⊗Jn

n
⊗ · · · ⊗ Jn

n
.

(7.105)
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Therefore, for the eigenvalues Pij and dual ones Qij we get

Pij = Cd
i

(
Cd

j

)−1
(n − 1)i−jKj (i),

Qij = mj

ki

Cd
j

(
Cd

i

)−1
(n − 1)j−iKi(j),

(7.106)

where Kk(x) is the Krawtchouk polynomials defined as

Kk(x) =
k∑

i=1

Cx
i Cn−x

k−i (−1)i(d − 1)k−i , (7.107)

and Cl
k = l!

k!(l−k)! . Then by using equation (2.7) we obtain the amplitude as

〈φk|φ0(t)〉 =
√

ak

nd

∑
j=0

e−it j (d−1)!(n−1)j−1

j !(d−j)! Qkj . (7.108)

8. Conclusion

CTQW on underlying graphs of the association schemes has been studied by using the
irreducible modules of Bose–Mesner and Terwilliger algebras connected with them, where the
irreducible modules of Terwilliger algebra and dual eigenvalues of association schemes play
an important role. It is shown that the Terwilliger algebra stratifies the graph into a (d + 1)

disjoint union of strata (associate classes), which is different from stratification based on
distance, except for distance regular graphs. Also similar to QD graphs of [1], the amplitudes
of observing the CTQW are the same for the vertices belonging to a given stratum. Hence,
for a CTQW on underlying graph of a give association scheme with diameter d we have at
most (d + 1) different probability amplitudes. Some worked out examples connected with
group association schemes show the importance of the algebraic combinatorics structures of
association schemes in CTQW. Using the algebraic combinatorics structures of some rather
important graphs called distance regular graphs, particularly the irreducible representation
of Terwilliger algebras, we have established the required conditions to apply the spectral
distributions method of [1], for studying CTQW on them. We expect that, using algebraic
combinatorics structures of association schemes, we can study CTQW on some underlying
graphs of non-distance regular association schemes by spectral distribution method. At the
end, even though it is possible to study CTQW on some graphs which lack association scheme
structure by spectral distribution method (for details see [33]), but the formalism is not as
elegant as the cases of underlying graphs association schemes.

Appendix A.

In this appendix, we study the method of symmetrization of group schemes of non-symmetric
one. If we have α ∈ Ci but α−1 is not in Ci , then the association scheme is non-symmetric.
In order to construct a symmetric group scheme from a give non-symmetric one, we need to
define the following class sums:

˜̄Ci =
{

C̄i for i = 0, 1, . . . , l,

C̄i + C̄i
−1 for i = l + 1, . . . , d+1+l

2 ,
(A.1)

where C̃i and ˜̄Ci for i = 0, 1, . . . , l are real and for i = l + 1, . . . , d+1+l
2 are complex.
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We can show that the above-defined class sums yield the following relations among
themselves:

˜̄Ci
˜̄Cj = |C̃i ||C̃j |

|G|

(
l∑

ν,k=0

χν(αi)χν(αj )χν(αk)

χν(1)
˜̄Ck

+
1

2

d+1+l
2∑

ν,r=l+1

χν(αi)χν(αj )(χν(αr) + χν(αr))

χν(1)
˜̄Cr


for i, j = 0, 1, . . . , l, and

˜̄Ci
˜̄Cj = |C̃i ||C̃j |

2|G|

(
l∑

ν,k=0

χν(αi)(χν(αj ) + χν(αj ))χν(αk)

χν(1)
˜̄Ck

+

d+1+l
2∑

ν,r=l+1

χν(αi)(χν(αj ) + χν(αj ))(χν(αr) + χν(αr))

χν(1)
˜̄Cr


for i = 0, 1, . . . , l and j = l + 1, . . . , d+1−l

2 ,

˜̄Ci
˜̄Cj = |C̃i ||C̃j |

2|G|

(
l∑

ν,k=0

(χν(αi) + χν(αi))(χν(αi) + χν(αi))χν(αk)

χν(1)
˜̄Ck

+

d+1+l
2∑

ν,r=l+1

(χν(αi) + χν(αi))(χν(αi) + χν(αi))(χν(αr) + χν(αr))

χν(1)
˜̄Cr

 (A.2)

for i, j = l + 1, . . . , d+1+l
2 . Therefore, the corresponding idempotents {Ẽ0, Ẽ1, . . . , Ẽ d+1+l

2
} of

group association scheme are its irreducible CG-modules projection operators, i.e.,

Ẽk =


χk(1)

|G|
∑l

j=0 χk(αj )
˜̄Cj

χk(1)

|G|
∑ d+1+l

2
j=l+1(χk(αj ) + χk(αj ))

˜̄Cj

(A.3)

for k = 0, 1, . . . , l and

Ẽk =


χk(1)

|G|
∑l

j=0 2χk(αj )
˜̄Cj

χk(1)

|G|
∑ d+1+l

2
j=l+1(χk(αj ) + χk(αj ))

˜̄Cj

(A.4)

for k = l + 1, . . . , d+1+l
2 .

Obviously, the above-defined association scheme is symmetric. It is rather straightforward
to see that its eigenvalues P̃ik and dual ones Q̃ik are

P̃ik −→
{

diκk

mi
χi(αk) for i = 0, 1, . . . , l,

diκk

mi
(χi(αk) + χi(αk)) for i = l + 1, . . . , d+1+l

2 ,
(A.5)

for k = 0, 1, . . . , l,

P̃ik −→
{

diκk

mi
(χi(αk) + χi(αk)) for i = 0, 1, . . . , l,

2 diκk

mi
(χi(αk) + χi(αk)) for i = l + 1, . . . , d+1+l

2 ,
(A.6)
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for k = 0, 1, . . . , d+1+l
2 ,

Q̃ik −→
{

dkχk(αi) for i = 0, 1, . . . , l,

dk(χk(αi) + χk(αi)) for i = l + 1, . . . , d+1+l
2 ,

(A.7)

for k = 0, 1, . . . , l and

Q̃ik −→
{

2dkχk(αi) for i = 0, 1, . . . , l,

dk(χk(αi) + χk(αi)) for i = l + 1, . . . , d+1+l
2 ,

(A.8)

for k = 0, 1, . . . , d+1+l
2 .

In fact, eigenvalues (dual eigenvalues) are sum of real and non-real contributions.
In section 7, using the above prescription we have studied the CTQW on cyclic groups.

Appendix B. Determination of spectral distribution by continued fractions method

Here in this appendix we explain how we can determine spectral distribution µ(x) of distance
regular graphs by using the Szegö–Jacobi sequences ({ωk}, {αk}); the parameters ωk and αk

are defined in (5.55).
To this aim let us consider the orthogonal polynomials {Qn} defined recursively by

Q0(x) = 1, Q1(x) = x − α1,

xQn(x) = Qn+1(x) + αn+1Qn(x) + ωnQn−1(x),
(B.1)

for n � 1. As it is shown in [42], the spectral distribution µ can be determined by the following
identity:

Gµ(x) =
∫

R

µ(dy)

x − y
= 1

x − α1 − ω1

x−α2− ω2
x−α3− ω3

x−α4−···

= Q
(1)
n−1(x)

Qn(x)
=

n∑
l=1

Bl

x − xl

, (B.2)

where Gµ(x) is called the Stieltjes transform of µ and Bl is the coefficient in the Gauss
quadrature formula corresponding to the roots xl of the polynomial Qn(x) where the
polynomials

{
Q(1)

n

}
are defined recursively as

Q
(1)
0 (x) = 1,

Q
(1)
1 (x) = x − α2,

xQ(1)
n (x) = Q

(1)
n+1(x) + αn+2Q

(1)
n (x) + ωn+1Q

(1)
n−1(x),

for n � 1.
Now if Gµ(x) is known, then the spectral distribution µ can be recovered from Gµ(x) by

means of the Stieltjes inversion formula:

µ(y) − µ(x) = − 1

π
lim

v−→0+

∫ y

x

Im{Gµ(u + iv)} du. (B.3)

Substituting the right-hand side of (B.2) into (B.3), the spectral distribution can be determined
in terms of xl, l = 1, 2, . . . , the roots of the polynomial Qn(x) and Guass quadrature constant
Bl, l = 1, 2, . . . , as

µ =
∑

l

Blδ(x − xl) (B.4)

(for more details see [36, 40, 42, 43]).
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Appendix C. List of some important distance regular graphs [44–46]

1. Collinearity graph gen. octagon GO(s, t)

µ = 1

(s + 1)(st + 1)(s2t2 + 1)
δ(x − s(t + 1)) +

st (t + 1)

4(st + 1 − √
2st)(s + t +

√
2st)

× δ(x − s + 1 −
√

2st) +
st (t + 1)

2(st + 1)(s + t)
δ(x − s + 1)

+
st (t + 1)

4(st + 1 − √
2st)(s + t +

√
2st)

δ(x − s + 1 +
√

2st)

+
s4

(s + 1)(s + t)(s2 + t2)
δ(x + t + 1).

Intersection numbers:

c0 = s(t + 1), c1 = st, c2 = st, c3 = st,

b1 = 1, b2 = 1, b3 = 1, b4 = t + 1.

2. Collinearity graph gen. dodecagon GD(s, 1)

µ = 1

((s + 1)2 − 3s)((s + 1)2 − s)(s + 1)2
δ(x − 2s) +

s − 1 +
√

3s

12((s + 1)2 − 3s)
δ(x − s + 1 −

√
3s)

+
s − 1 − √

3s

12((s + 1)2 − 3s)
δ(x − s + 1 +

√
3s) +

s − 1 +
√

s

4((s + 1)2 − s)
δ(x − s + 1 +

√
s)

+
s − 1 − √

s

4((s + 1)2 − s)
δ(x − s + 1 +

√
s) +

s5

((s + 1)2 − 3s)((s + 1)2 − s)(s + 1)2
δ(x + 2).

Intersection numbers:

c0 = 2s, c1 = s, c2 = s, c3 = s, c4 = s, c5 = s,

b1 = 1, b2 = 1, b3 = 1, b4 = 1, b5 = 1, b6 = 2.

3. M22 graph

µ = 7

110
δ(x + 4) +

3

10
δ(x + 3) +

7

15
δ(x − 1) +

1

6
δ(x − 4) +

1

330
δ(x − 7).

Intersection numbers:

c0 = 7, c1 = 6, c2 = 4, c3 = 4,

b1 = 1, b2 = 1, b3 = 1, b4 = 6.

4. Incidence graph pg(k − 1, k − 1, k − 1), k = 4, 5, 7, 8

µ = 1

2k2
(δ(x − k) + δ(x + k)) +

k − 1

k2
δ(x) +

k − 1

2k
(δ(x −

√
k) + δ(x +

√
k)).

Intersection numbers:

c0 = k, c1 = k − 1, c2 = k − 1, c3 = 1,

b1 = 1, b2 = 1, b3 = k − 1, b4 = k.

5. Coset graph doubly truncated binary Golay

µ = 21

512
δ(x + 11) +

35

64
δ(x + 3) +

105

256
δ(x − 5) +

1

512
δ(x − 21).
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Intersection numbers:

c0 = 21, c1 = 20, c2 = 16,

b1 = 1, b2 = 2, b3 = 12.

6. Coset graph extended ternary Golay code

µ = 8

243
δ(x + 12) +

440

729
δ(x + 3) +

88

243
δ(x − 6) +

1

729
δ(x − 24).

Intersection numbers:

c0 = 24, c1 = 22, c2 = 20,

b1 = 1, b2 = 2, b3 = 12.

7. Wells graph

µ = 1
16δ(x + 3) + 1

4 (δ(x +
√

5) + δ(x −
√

5) + δ(x − 1)) + 3
16δ(x − 5)).

Intersection numbers:

c0 = 5, c1 = 4, c2 = 1, c3 = 1,

b1 = 1, b2 = 1, b3 = 4, b4 = 5.

8. 3-Cover GQ(2, 2)

µ = 1
9δ(x + 3) + 2

5δ(x + 2) + 4
15δ(x − 3) + 1

5δ(x − 1) + 1
45δ(x − 6)).

Intersection numbers:

c0 = 6, c1 = 4, c2 = 2, c3 = 1,

b1 = 1, b2 = 1, b3 = 4, b4 = 6.

9. Double Hoffman–Singleton

µ = 7

25
(δ(x + 2) + δ(x − 2)) +

21

100
(δ(x + 3) + δ(x − 3)) +

1

100
(δ(x + 7) + δ(x − 7)).

Intersection numbers:

c0 = 7, c1 = 6, c2 = 6, c3 = 1, c4 = 1,

b1 = 1, b2 = 1, b3 = 6, b4 = 6, b5 = 7.

10. Foster graph

µ = 1

9
δ(x) +

1

5
(δ(x + 1) + δ(x − 1)) +

1

10
(δ(x + 2) + δ(x − 2)) +

1

90
(δ(x + 3) + δ(x − 3))

+
2

15
(δ(x +

√
6) + δ(x −

√
6)).

Intersection numbers:

c0 = 3, c1 = 2, c2 = 2, c3 = 2, c4 = 2, c5 = 1, c6 = 1, c7 = 1,

b1 = 1, b2 = 1, b3 = 1, b4 = 1, b5 = 2, b6 = 2, b7 = 2, b8 = 3.

In all of the above examples, ak is defined in terms of bk and ck as

ak = c0c1 · · · ck−1

b1b2 · · · bk

. (C.1)
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